ข่าว

แสดงบทความที่มีป้ายกำกับ การกำหนดตำแหน่งบนพื้นโลก แสดงบทความทั้งหมด
แสดงบทความที่มีป้ายกำกับ การกำหนดตำแหน่งบนพื้นโลก แสดงบทความทั้งหมด

21 มิถุนายน 2559

การตั้งค่า Position เส้นโครงแผนที่ GPS etrex 10

การตั้งค่า Position เส้นโครงแผนที่




แสดงระบบพิกัด Position Format 
พิกัด UTMUPS เป็นระบบพิกัดกริด
หรือ พิกัดภูมิศาสตร์ คือแบบ องศา hhhh , องศา hhh ลิปดา mmm,องศา hhh ลิปดา mmm พิลิปดา sss

คุณสมบัติเครื่อง GPS eTrex 10

คุณสมบัติเครื่อง GPS eTrex 10

คุณสมบัติเครื่อง:
ขนาดเครื่องกว้าง x สูง x หนา
2.1" x 4.0" x 1.3" (5.4 x 10.3 x 3.3 cm)
จอแสดงผล, กว้างxสูง:
1.4" x 1.7" (3.6 x 4.3 cm); 2.2" diag (5.6 cm)
รายละเอียดจอกว้างxสูง:
128 x 160 pixels
ชนิดการแสดงผล:
transflective, monochrome
น้ำหนัก
5 oz (141.7 g) with batteries
แบตเตอรี่:
2 AA batteries (not included); NiMH or Lithium recommended
การใช้งานแบตเตอรี่แบบต่อเนื่อง:
25 hours
กันน้ำ:
yes (IPX7)
ลอยน้ำ:
no
การรับสัญญาณ (High-sensitivity receive)
yes
การเชื่อมต่อ:
USB
ภาษา
ภาษาอังกฤษ ภาษาไทย ภาษาอินโดนีเซีย


เครื่อง GPS etrex 10 พร้อมอุปกรณ์

11 กุมภาพันธ์ 2556

เทคนิคการหาตำแหน่ง GPS

เทคนิคการหาตำแหน่ง

การคำนวณพิกัดโดยระบบจีพีเอส ใช้ดาวเทียมสี่ดวงเป็นอย่างน้อยเพื่อความแม่นยำ
การหาตำแหน่งมาจากแนวความคิดง่าย ๆ ที่ว่า ถ้าเรารู้ตำแหน่งของดาวเทียม และเรารู้ระยะทางจากดาวเทียมถึงเครื่องรับ เราจะสามารถหาตำแหน่งของเครื่องรับสัญญาณได้ เช่น ถ้าลองพิจารณาใน 2 มิติ แล้วทั้งตำแหน่งที่กำหนดให้ 2 จุด และระยะจากจุดทั้ง 2 ถึงจุดที่ต้องการหา (x,y) เราสามารถใช้วงเวียนเขียนเส้น โดยมีจุดที่กำหนดให้เป็นศูนย์กลาง รัศมีวงเวียนเท่ากับระยะทางที่รู้ เส้นวงกลมที่ได้จะตัดกัน 2 จุด โดยหนึ่งจุดเป็นคำตอบที่ถูกต้อง ทีนี้สมการอย่างง่ายเขียนได้เป็น
ระยะจากจุดที่ 1 (X1, Y1) D_1 = \sqrt{(X_1-x) ^2 + (Y_1-y) ^2}
ระยะจากจุดที่ 2 (X2, Y2) D_2 = \sqrt{(X_2-x) ^2 + (Y_2-y) ^2}
ถ้าเป็นสามมิติก็สามารถทำได้ในลักษณะเดียวกัน โดยมีจุดที่กำหนดให้ 3 จุด ในทำนองเดียวกัน สมการอย่างง่าย
ระยะจากจุดที่ 1 D_1 = \sqrt{(X_1-x) ^2 + (Y_1-y) ^2 + (Z_1-z) ^2}
ระยะจากจุดที่ 2 D_2 = \sqrt{(X_2-x) ^2 + (Y_2-y) ^2 + (Z_2-z) ^2}
ระยะจากจุดที่ 3 D_3 = \sqrt{(X_3-x) ^2 + (Y_3-y) ^2 + (Z_3-z) ^2}
สำหรับระยะทางนั้น เครื่องรับสัญญาณจีพีเอสสามารถคำนวณโดยการจับเวลาที่สัญญาณเดินทางจากดาวเทียมถึงเครื่องรับ แล้วคูณด้วยความเร็วแสง ก็จะได้ระยะ ณ เสี้ยวเวลา (epoch) ที่ดาวเทียมห่างจากเครื่องรับ ถ้าไรก็ดี เนื่องจากคลื่นเดินทางด้วยความเร็วแสง นาฬิกาที่จับเวลาที่เครื่องรับมีคุณภาพเหมือนนาฬิกาควอตซ์ทั่วไป ความผิดพลาดจากการจับเวลา (dt) แม้เพียงเล็กน้อยก็ทำให้ระยะผิดไปมาก ความผิดพลาดดังกล่าวจึงนับเป็นตัวแปรสำคัญในการคำนวณตำแหน่ง ด้วยเหตุนี้ การหาตำแหน่งจึงมีตัวแปรพื้นฐานที่สำคัญรวม 4 ตัวแปร ได้แก่ ตำแหน่งที่ต้องการหาใน 3 มิติ (x,y,z) และ ความผิดพลาดอันเนื่องมาจากนาฬิกาที่ใช้ ทำให้เราต้องการดาวเทียมอย่างน้อย 4 ดวง เพื่อสร้าง 4 สมการ ในการแก้ตัวแปรทั้ง 4 สมการอย่างง่ายจึงกลายเป็น
ระยะจากจุดที่ 1 D_1 = \sqrt{(X_1-x) ^2 + (Y_1-y) ^2 + (Z_1-z) ^2} + c\;dt
ระยะจากจุดที่ 2 D_2 = \sqrt{(X_2-x) ^2 + (Y_2-y) ^2 + (Z_2-z) ^2} + c\;dt
ระยะจากจุดที่ 3 D_3 = \sqrt{(X_3-x) ^2 + (Y_3-y) ^2 + (Z_3-z) ^2} + c\;dt
ระยะจากจุดที่ 4 D_4 = \sqrt{(X_4-x) ^2 + (Y_4-y) ^2 + (Z_4-z) ^2} + c\;dt
เมื่อ c เป็นความเร็วแสง
ในกรณีที่มีจำนวนดาวเทียมมากกว่านี้ ก็จะมีจำนวนสมการมากขึ้นเท่ากับจำนวนดาวเทียมสังเกตการณ์

24 มกราคม 2556

ระบบ GPS อื่น ๆ

ระบบอื่น ๆ
ระบบบอกพิกัดด้วยดาวเทียมอื่นๆ ที่คล้ายคลึงกับระบบจีพีเอส ในปัจจุบันมีหลายระบบ ได้แก่
ระบบที่เสริม GPS
  • QZSS ระบบดาวเทียมของญี่ปุ่น ทำหน้าที่หลากหลาย ช่วยเสริมการหาตำแหน่งด้วย GPS โดยเน้นพื้นที่ประเทศญี่ปุ่น ที่มีอาคารสูงบดบังสัญญาณ GPS สำหรับ QZSS ถูกออกแบบให้มีวงโคจรเป็นเลข 8 โดยเต็มระบบจะประกอบด้วยดาวเทียม 3-4 ดวง

16 มกราคม 2556

จีพีเอส

จีพีเอส

อ้างอิงมา จากวิกิพีเดีย สารานุกรมเสรี
    
ภาพวาดแสดงดาวเทียม NAVSTAR ของสหรัฐ
เครื่องรับสัญญาณจีพีเอส KAMAZ NAAV450
เครื่องรับสัญญาณจีพีเอส แมเกลลัน เบลเซอร์
ระบบกำหนดตำแหน่งบนโลก[1] หรือ จีพีเอส (อังกฤษ: Global Positioning System: GPS) คือระบบบอกตำแหน่งบนพื้นผิวโลก โดยอาศัยการคำนวณจากความถี่สัญญาณนาฬิกาที่ส่งมาจากดาวเทียมที่โคจรอยู่รอบโลกซึ่งทราบตำแหน่ง ทำให้ระบบนี้สามารถบอกตำแหน่ง ณ จุดที่สามารถรับสัญญาณได้ทั่วโลก โดยเครื่องรับสัญญาณจีพีเอส รุ่นใหม่ๆ จะสามารถคำนวณความเร็วและทิศทางนำมาใช้ร่วมกับโปรแกรมแผนที่ เพื่อใช้ในการนำทางได้
แนวคิดในการพัฒนาระบบจีพีเอส เริ่มต้นตั้งแต่ปี ค.ศ. 1957 เมื่อนักวิทยาศาสตร์ของสหรัฐอเมริกา นำโดย Dr. Richard B. Kershner ได้ติดตามการส่งดาวเทียมสปุตนิกของโซเวียต และพบปรากฏการณ์ดอปเปลอร์ของคลื่นวิทยุที่ส่งมาจากดาวเทียม พวกเขาพบว่าหากทราบตำแหน่งที่แน่นอนบนพื้นผิวโลก ก็สามารถระบุตำแหน่งของดาวเทียมได้จากการตรวจวัดดอปเปลอร์ และหากทราบตำแหน่งที่แน่นอนของดาวเทียม ก็สามารถระบุตำแหน่งบนพื้นโลกได้ ในทางกลับกัน
กองทัพเรือสหรัฐได้ทดลองระบบนำทางด้วยดาวเทียม ชื่อ TRANSIT เป็นครั้งแรกเมื่อ ค.ศ. 1960 ประกอบด้วยดาวเทียมจำนวน 5 ดวง ส่วนดาวเทียมที่ใช้ในระบบจีพีเอส (GPS Block-I) ส่งขึ้นทดลองเป็นครั้งแรกเมื่อ ค.ศ. 1978 เพื่อใช้ในทางการทหาร
เมื่อ ค.ศ. 1983 หลังจากเกิดเหตุการณ์โคเรียนแอร์ไลน์ เที่ยวบินที่ 007 ของเกาหลีใต้ บินพลัดหลงเข้าไปในน่านฟ้าของสหภาพโซเวียต และถูกยิงตก ผู้โดยสาร 269 คนเสียชีวิตทั้งหมด ประธานาธิบดีโรนัลด์ เรแกนได้ประกาศว่า เมื่อพัฒนาระบบจีพีเอสแล้วเสร็จ จะอนุญาตให้ประชาชนทั่วไปใช้งานได้
ดาวเทียมจีพีเอส เป็นดาวเทียมที่มีวงโคจรระดับกลาง (Medium Earth Orbit: MEO) ที่ระดับความสูงประมาณ 20,200 กิโลเมตร (12,600 ไมล์ หรือ 10,900 ไมล์ทะเล) จากพื้นโลก ใช้การยืนยันตำแหน่งโดยอาศัยพิกัดจากดาวเทียมอย่างน้อย 4 ดวง ดาวเทียมจะโคจรรอบโลกเป็นเวลา 12 ชั่วโมงต่อหนึ่งรอบ ที่ความเร็ว 4 กิโลเมตร/วินาที การโคจรแต่ละรอบนั้นสามารถได้เป็น 6 ระนาบๆ ละ 4 ดวง ทำมุม 55 องศา โดยทั้งระบบจะต้องมีดาวเทียม 24 ดวง หรือมากกว่า เพื่อให้สามารถยืนยันตำแหน่งได้ครอบคลุมทุกจุดบนผิวโลก ปัจจุบัน เป็นดาวเทียม GPS Block-II มีดาวเทียมสำรองประมาณ 4-6 ดวง